What, I ask to begin with, are the characteristics of a good scientific theory? Among a number of quite usual answers I select five, not because they are exhaustive, but because they are individually important and collectively sufficiently varied to indicate what is at stake. First, a theory should be accurate: within its domain, that is, consequences deducible from a theory should be in demonstrated agreement with the results of existing experiments and observations. Second, a theory should be consistent, not only internally or with itself, but also with other currently accepted theories applicable to related aspects of nature. Third, it should have broad scope: in particular, a theory's consequences should extend far beyond the particular observations, laws, or subtheories it was initially designed to explain. Fourth, and closely related, it should be simple, bringing order to phenomena that in its absence would be individually isolated and, as a set, confused. Fifth—a somewhat less standard item, but one of special importance to actual scientific decisions—a theory should be fruitful of new research findings: it should, that is, disclose new phenomena or previously unnoted relationships among those already known. These five characteristics—accuracy, consistency, scope, simplicity, and fruitfulness—are all standard criteria for evaluating the adequacy of a theory. If they had not been, I would have devoted far more space to them in my book, for I agree entirely with the traditional view that they play a vital role when scientists must choose between an established theory and an upstart competitor. Together with others of much the same sort, they provide the shared basis for theory choice.
(Thomas S. Kuhn, "Objectivity, Value Judgment, and Theory Choice," chap. 13 in The Essential Tension: Selected Studies in Scientific Tradition and Change [Chicago and London: The University of Chicago Press, 1977], 320-39, at 321-2 [italics in original; boldface added; footnote omitted])